Experimental test of Landauer’s principle in single-bit operations on nanomagnetic memory bits

نویسندگان

  • Jeongmin Hong
  • Brian Lambson
  • Scott Dhuey
  • Jeffrey Bokor
چکیده

Minimizing energy dissipation has emerged as the key challenge in continuing to scale the performance of digital computers. The question of whether there exists a fundamental lower limit to the energy required for digital operations is therefore of great interest. A well-known theoretical result put forward by Landauer states that any irreversible single-bit operation on a physical memory element in contact with a heat bath at a temperature T requires at least k B T ln(2) of heat be dissipated from the memory into the environment, where k B is the Boltzmann constant. We report an experimental investigation of the intrinsic energy loss of an adiabatic single-bit reset operation using nanoscale magnetic memory bits, by far the most ubiquitous digital storage technology in use today. Through sensitive, high-precision magnetometry measurements, we observed that the amount of dissipated energy in this process is consistent (within 2 SDs of experimental uncertainty) with the Landauer limit. This result reinforces the connection between "information thermodynamics" and physical systems and also provides a foundation for the development of practical information processing technologies that approach the fundamental limit of energy dissipation. The significance of the result includes insightful direction for future development of information technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eaters of the lotus: Landauer’s principle and the return of Maxwell’s demon

Landauer’s principle is the loosely formulated notion that the erasure of n bits of information must always incur a cost of k ln n in thermodynamic entropy. It can be formulated as a precise result in statistical mechanics, but for a restricted class of erasure processes that use a thermodynamically irreversible phase space expansion, which is the real origin of the law’s entropy cost and whose...

متن کامل

Design and Simulation of a Modified 32-bit ROM-based Direct Digital Frequency Synthesizer on FPGA

This paper presents a modified 32-bit ROM-based Direct Digital Frequency Synthesizer (DDFS). Maximum output frequency of the DDFS is limited by the structure of the accumulator used in the DDFS architecture. The hierarchical pipeline accumulator (HPA) presented in this paper has less propagation delay time rather than the conventional structures. Therefore, it results in both higher maximum ope...

متن کامل

A Transprecision Floating-Point Platform for Ultra-Low Power Computing

In modern low-power embedded platforms, the execution of floating-point (FP) operations emerges as a major contributor to the energy consumption of compute-intensive applications with large dynamic range. Experimental evidence shows that 50% of the energy consumed by a core and its data memory is related to FP computations. The adoption of FP formats requiring a lower number of bits is an inter...

متن کامل

Estimating Human Cognitive Capacities: A Response to Landauer

Thomas K. Landauer’s (1986) estimate of the capacity of normal human memory is deeply flawed. His estimate neither reflects the quantity of computational resources necessary for supporting a human-like memory, nor provides any constraint on a theory of such a memory. The roots of the problem lie in a m isunderstanding of the relationship of previous experience to intelligent behavior and theref...

متن کامل

Geometric approach to optimal nonequilibrium control: Minimizing dissipation in nanomagnetic spin systems.

Optimal control of nanomagnets has become an urgent problem for the field of spintronics as technological tools approach thermodynamically determined limits of efficiency. In complex, fluctuating systems, such as nanomagnetic bits, finding optimal protocols is challenging, requiring detailed information about the dynamical fluctuations of the controlled system. We provide a physically transpare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016